Name | Er:yag laser skin rejuvenation machine | Water pump | 12v6A (5.0/L) (0.42mpa) |
Wavelength | 2940nm | Flow sensor | Minimum 2.3L/min flow requirement |
Working frequency | 1~10HZ (adjustable) | Filter | 15μm external (can be quickly removed and replaced) |
Energy density | 1~150J/cm² | Cooling system | 400wTEC (program can be customized) |
Handle cooling | TEC+Sapphire cooling | Cooling fan | 12v silent fans×2 |
TEC cooling slice | 12v6A | Chassis material | ABS shell/metal shell |
Spot size | 2mm~10mm(can be customized) | Water tank volume | 3L~5L |
Laser power | 2000~3000w | Power supply voltage | 220v10A |
Pulse width | 1ms~500ms | After-sales service | Online video technical support |
Output mode | Pulse output | Warranty | 1 years |
Operating language | Language can be customized | Packing size | 82cm×42cm×70cm |
Screen size | 10.4LED touch screen | Total weight | 50KG (including packaging) |
Water temperature protection temperature | 5°~35° | / | / |
Erbium:YAG is emitted at 2,940 nm, while CO2 has a much longer wavelength at 10,600 nm. Chromophore absorption curves show a significant bump in the water absorption coefficient between 2,500-3,500 nm and a drop down at 7,500-20,000 nm.
Erbium:YAG lasers have a very efficient beam to target water and relatively limited hemoglobin absorption. Because water is such a critical component in the epidermal and dermal tissue, the 2,940 nm wavelength produced by Erbium:YAG lasers is capable of rapidly vaporizing water residing in the skin. This unique wavelength delivers an almost instant skin ablation while limiting heat damage in the surrounding area.
This thermal damage is the biggest difference between Erbium and Carbon Dioxide lasers. Carbon Dioxide lasers have been used to treat and ablate the skin since the 1970s. However, because the absorption in skin tissue is relatively low compared to Erbium lasers (in both water and hemoglobin), their result is substantial excess heat in the surrounding tissue. The consequences of that are localized necrosis (tissue death that leads to slower recovery time), more post-treatment discomfort, and greater instances of post-inflammatory hyperpigmentation (PIH), all while not necessarily allowing for better results when compared to Erbium lasers.2. Erbium:YAG lasers can vary their treatment depths (full skin resurfacing vs. light Celebrity Peel).
A "cold laser" treatment performs laser therapy that doesn't cause significant thermal damage to the tissue. CO2 technology can't provide the same treatment because the thermal damage inherent in the wavelength of 10,600 nm makes it incredibly difficult (or impossible) to treat a patient without heating the tissue. Practitioners using Er:YAG lasers are afforded the option to cater treatments to each patient better and can elect to build thermal damage by increasing the pulse duration, or keeping those thermal effects limited.
3. Erbium:YAG laser treatments create less thermal damage and are less painful.
Thanks to the greatly limited thermal effects of Erbium lasers, Er:YAG treatments are notably less painful than CO2 lasers, and patients do not require any anesthesia when receiving treatment for small lesions. These safety features make Er:YAG lasers the superior choice for treating delicate areas such as the periorbital region, neck, chest, and hands.
Hyperpigmentation and hypopigmentation are mainly due to thermal damage and collagen stimulation. Melanin can only absorb wavelengths between about 300-1,000 nm, so CO2 and Er:YAG do not directly cause the pigment issues. One study* found that hypopigmentation is more likely with CO2 while also finding that treatment depth is related to an increased chance of hyperpigmentation.
While it’s well established that CO2 lasers penetrate deeper in the dermis than Erbium lasers, given constant fluence or energy settings, that doesn’t always correlate with improved patient outcomes. Erbium:YAG lasers deliver impressive results with very few, if any, side effects.
5. Erbium:YAG treatments require a shorter recovery time compared to CO2 lasers.
Although Er:YAG lasers do not penetrate as deeply as CO2 lasers, they're able to mimic the effects of CO2 lasers by increasing pulse duration while limiting the risk of unwanted side effects. However, a CO2 system can not replicate the same success as an Er:YAG system without increasing the risk of harm to the patient. The flexibility of an Er:YAG laser’s pulse formats and energy capabilities make it a desirable and safer alternative to the time-tested CO2 laser for ablative and fractional treatments.
Copyright © 2020 Guangzhou Jingmei Beauty Technology Co., Ltd. | All Rights Reserved
We are here to help you! If you close the chatbox, you will automatically receive a response from us via email. Please be sure to leave your contact details so that we can better assist